3.511 \(\int \frac{\left (c+d x+e x^2+f x^3\right ) \left (a+b x^4\right )^{3/2}}{x^9} \, dx\)

Optimal. Leaf size=377 \[ \frac{2 b^{5/4} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} \left (21 \sqrt{a} f+5 \sqrt{b} d\right ) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{35 \sqrt [4]{a} \sqrt{a+b x^4}}+\frac{1}{2} b^{3/2} e \tanh ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a+b x^4}}\right )+\frac{12 b^{3/2} f x \sqrt{a+b x^4}}{5 \left (\sqrt{a}+\sqrt{b} x^2\right )}-\frac{12 \sqrt [4]{a} b^{5/4} f \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{5 \sqrt{a+b x^4}}-\frac{3 b^2 c \tanh ^{-1}\left (\frac{\sqrt{a+b x^4}}{\sqrt{a}}\right )}{16 \sqrt{a}}-\frac{1}{560} b \sqrt{a+b x^4} \left (\frac{105 c}{x^4}+\frac{160 d}{x^3}+\frac{280 e}{x^2}+\frac{672 f}{x}\right )-\frac{1}{840} \left (a+b x^4\right )^{3/2} \left (\frac{105 c}{x^8}+\frac{120 d}{x^7}+\frac{140 e}{x^6}+\frac{168 f}{x^5}\right ) \]

[Out]

-(b*((105*c)/x^4 + (160*d)/x^3 + (280*e)/x^2 + (672*f)/x)*Sqrt[a + b*x^4])/560 +
 (12*b^(3/2)*f*x*Sqrt[a + b*x^4])/(5*(Sqrt[a] + Sqrt[b]*x^2)) - (((105*c)/x^8 +
(120*d)/x^7 + (140*e)/x^6 + (168*f)/x^5)*(a + b*x^4)^(3/2))/840 + (b^(3/2)*e*Arc
Tanh[(Sqrt[b]*x^2)/Sqrt[a + b*x^4]])/2 - (3*b^2*c*ArcTanh[Sqrt[a + b*x^4]/Sqrt[a
]])/(16*Sqrt[a]) - (12*a^(1/4)*b^(5/4)*f*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4
)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticE[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(5*S
qrt[a + b*x^4]) + (2*b^(5/4)*(5*Sqrt[b]*d + 21*Sqrt[a]*f)*(Sqrt[a] + Sqrt[b]*x^2
)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a^(
1/4)], 1/2])/(35*a^(1/4)*Sqrt[a + b*x^4])

_______________________________________________________________________________________

Rubi [A]  time = 0.678711, antiderivative size = 377, normalized size of antiderivative = 1., number of steps used = 14, number of rules used = 13, integrand size = 30, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.433 \[ \frac{2 b^{5/4} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} \left (21 \sqrt{a} f+5 \sqrt{b} d\right ) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{35 \sqrt [4]{a} \sqrt{a+b x^4}}+\frac{1}{2} b^{3/2} e \tanh ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a+b x^4}}\right )+\frac{12 b^{3/2} f x \sqrt{a+b x^4}}{5 \left (\sqrt{a}+\sqrt{b} x^2\right )}-\frac{12 \sqrt [4]{a} b^{5/4} f \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{5 \sqrt{a+b x^4}}-\frac{3 b^2 c \tanh ^{-1}\left (\frac{\sqrt{a+b x^4}}{\sqrt{a}}\right )}{16 \sqrt{a}}-\frac{1}{560} b \sqrt{a+b x^4} \left (\frac{105 c}{x^4}+\frac{160 d}{x^3}+\frac{280 e}{x^2}+\frac{672 f}{x}\right )-\frac{1}{840} \left (a+b x^4\right )^{3/2} \left (\frac{105 c}{x^8}+\frac{120 d}{x^7}+\frac{140 e}{x^6}+\frac{168 f}{x^5}\right ) \]

Antiderivative was successfully verified.

[In]  Int[((c + d*x + e*x^2 + f*x^3)*(a + b*x^4)^(3/2))/x^9,x]

[Out]

-(b*((105*c)/x^4 + (160*d)/x^3 + (280*e)/x^2 + (672*f)/x)*Sqrt[a + b*x^4])/560 +
 (12*b^(3/2)*f*x*Sqrt[a + b*x^4])/(5*(Sqrt[a] + Sqrt[b]*x^2)) - (((105*c)/x^8 +
(120*d)/x^7 + (140*e)/x^6 + (168*f)/x^5)*(a + b*x^4)^(3/2))/840 + (b^(3/2)*e*Arc
Tanh[(Sqrt[b]*x^2)/Sqrt[a + b*x^4]])/2 - (3*b^2*c*ArcTanh[Sqrt[a + b*x^4]/Sqrt[a
]])/(16*Sqrt[a]) - (12*a^(1/4)*b^(5/4)*f*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4
)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticE[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(5*S
qrt[a + b*x^4]) + (2*b^(5/4)*(5*Sqrt[b]*d + 21*Sqrt[a]*f)*(Sqrt[a] + Sqrt[b]*x^2
)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a^(
1/4)], 1/2])/(35*a^(1/4)*Sqrt[a + b*x^4])

_______________________________________________________________________________________

Rubi in Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \[ \text{Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((f*x**3+e*x**2+d*x+c)*(b*x**4+a)**(3/2)/x**9,x)

[Out]

Timed out

_______________________________________________________________________________________

Mathematica [C]  time = 4.97472, size = 309, normalized size = 0.82 \[ -\frac{4 b^{3/2} \sqrt{\frac{b x^4}{a}+1} \left (21 \sqrt{a} f+5 i \sqrt{b} d\right ) F\left (\left .i \sinh ^{-1}\left (\sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} x\right )\right |-1\right )}{35 \sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} \sqrt{a+b x^4}}+\frac{1}{2} b^{3/2} e \tanh ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a+b x^4}}\right )-\frac{3 b^2 c \tanh ^{-1}\left (\frac{\sqrt{a+b x^4}}{\sqrt{a}}\right )}{16 \sqrt{a}}-\frac{\sqrt{a+b x^4} \left (a (210 c+8 x (30 d+7 x (5 e+6 f x)))+b x^4 \left (525 c+16 x \left (45 d+70 e x+147 f x^2\right )\right )\right )}{1680 x^8}-\frac{12 i a b f \sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} \sqrt{\frac{b x^4}{a}+1} E\left (\left .i \sinh ^{-1}\left (\sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} x\right )\right |-1\right )}{5 \sqrt{a+b x^4}} \]

Antiderivative was successfully verified.

[In]  Integrate[((c + d*x + e*x^2 + f*x^3)*(a + b*x^4)^(3/2))/x^9,x]

[Out]

-(Sqrt[a + b*x^4]*(b*x^4*(525*c + 16*x*(45*d + 70*e*x + 147*f*x^2)) + a*(210*c +
 8*x*(30*d + 7*x*(5*e + 6*f*x)))))/(1680*x^8) + (b^(3/2)*e*ArcTanh[(Sqrt[b]*x^2)
/Sqrt[a + b*x^4]])/2 - (3*b^2*c*ArcTanh[Sqrt[a + b*x^4]/Sqrt[a]])/(16*Sqrt[a]) -
 (((12*I)/5)*a*Sqrt[(I*Sqrt[b])/Sqrt[a]]*b*f*Sqrt[1 + (b*x^4)/a]*EllipticE[I*Arc
Sinh[Sqrt[(I*Sqrt[b])/Sqrt[a]]*x], -1])/Sqrt[a + b*x^4] - (4*b^(3/2)*((5*I)*Sqrt
[b]*d + 21*Sqrt[a]*f)*Sqrt[1 + (b*x^4)/a]*EllipticF[I*ArcSinh[Sqrt[(I*Sqrt[b])/S
qrt[a]]*x], -1])/(35*Sqrt[(I*Sqrt[b])/Sqrt[a]]*Sqrt[a + b*x^4])

_______________________________________________________________________________________

Maple [C]  time = 0.027, size = 416, normalized size = 1.1 \[ -{\frac{ac}{8\,{x}^{8}}\sqrt{b{x}^{4}+a}}-{\frac{5\,bc}{16\,{x}^{4}}\sqrt{b{x}^{4}+a}}-{\frac{3\,{b}^{2}c}{16}\ln \left ({\frac{1}{{x}^{2}} \left ( 2\,a+2\,\sqrt{a}\sqrt{b{x}^{4}+a} \right ) } \right ){\frac{1}{\sqrt{a}}}}-{\frac{ad}{7\,{x}^{7}}\sqrt{b{x}^{4}+a}}-{\frac{3\,bd}{7\,{x}^{3}}\sqrt{b{x}^{4}+a}}+{\frac{4\,{b}^{2}d}{7}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}{\it EllipticF} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}}+{\frac{e}{2}{b}^{{\frac{3}{2}}}\ln \left ( \sqrt{b}{x}^{2}+\sqrt{b{x}^{4}+a} \right ) }-{\frac{ae}{6\,{x}^{6}}\sqrt{b{x}^{4}+a}}-{\frac{2\,be}{3\,{x}^{2}}\sqrt{b{x}^{4}+a}}-{\frac{af}{5\,{x}^{5}}\sqrt{b{x}^{4}+a}}-{\frac{7\,fb}{5\,x}\sqrt{b{x}^{4}+a}}+{{\frac{12\,i}{5}}f{b}^{{\frac{3}{2}}}\sqrt{a}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}{\it EllipticF} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}}-{{\frac{12\,i}{5}}f{b}^{{\frac{3}{2}}}\sqrt{a}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}{\it EllipticE} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(3/2)/x^9,x)

[Out]

-1/8*c*a/x^8*(b*x^4+a)^(1/2)-5/16*c*b/x^4*(b*x^4+a)^(1/2)-3/16*c/a^(1/2)*b^2*ln(
(2*a+2*a^(1/2)*(b*x^4+a)^(1/2))/x^2)-1/7*d*a*(b*x^4+a)^(1/2)/x^7-3/7*d*b*(b*x^4+
a)^(1/2)/x^3+4/7*d*b^2/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)
*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)*EllipticF(x*(I/a^(1/2)*b^(1/2))
^(1/2),I)+1/2*e*b^(3/2)*ln(b^(1/2)*x^2+(b*x^4+a)^(1/2))-1/6*e*a/x^6*(b*x^4+a)^(1
/2)-2/3*e*b/x^2*(b*x^4+a)^(1/2)-1/5*f*a*(b*x^4+a)^(1/2)/x^5-7/5*f*b*(b*x^4+a)^(1
/2)/x+12/5*I*f*b^(3/2)*a^(1/2)/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^
2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)*EllipticF(x*(I/a^(1/2)*
b^(1/2))^(1/2),I)-12/5*I*f*b^(3/2)*a^(1/2)/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2
)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)*EllipticE(x
*(I/a^(1/2)*b^(1/2))^(1/2),I)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \text{Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b*x^4 + a)^(3/2)*(f*x^3 + e*x^2 + d*x + c)/x^9,x, algorithm="maxima")

[Out]

Exception raised: ValueError

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{{\left (b f x^{7} + b e x^{6} + b d x^{5} + b c x^{4} + a f x^{3} + a e x^{2} + a d x + a c\right )} \sqrt{b x^{4} + a}}{x^{9}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b*x^4 + a)^(3/2)*(f*x^3 + e*x^2 + d*x + c)/x^9,x, algorithm="fricas")

[Out]

integral((b*f*x^7 + b*e*x^6 + b*d*x^5 + b*c*x^4 + a*f*x^3 + a*e*x^2 + a*d*x + a*
c)*sqrt(b*x^4 + a)/x^9, x)

_______________________________________________________________________________________

Sympy [A]  time = 21.2665, size = 444, normalized size = 1.18 \[ \frac{a^{\frac{3}{2}} d \Gamma \left (- \frac{7}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{7}{4}, - \frac{1}{2} \\ - \frac{3}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 x^{7} \Gamma \left (- \frac{3}{4}\right )} + \frac{a^{\frac{3}{2}} f \Gamma \left (- \frac{5}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{5}{4}, - \frac{1}{2} \\ - \frac{1}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 x^{5} \Gamma \left (- \frac{1}{4}\right )} + \frac{\sqrt{a} b d \Gamma \left (- \frac{3}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{3}{4}, - \frac{1}{2} \\ \frac{1}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 x^{3} \Gamma \left (\frac{1}{4}\right )} - \frac{\sqrt{a} b e}{2 x^{2} \sqrt{1 + \frac{b x^{4}}{a}}} + \frac{\sqrt{a} b f \Gamma \left (- \frac{1}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{1}{2}, - \frac{1}{4} \\ \frac{3}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 x \Gamma \left (\frac{3}{4}\right )} - \frac{a^{2} c}{8 \sqrt{b} x^{10} \sqrt{\frac{a}{b x^{4}} + 1}} - \frac{3 a \sqrt{b} c}{16 x^{6} \sqrt{\frac{a}{b x^{4}} + 1}} - \frac{a \sqrt{b} e \sqrt{\frac{a}{b x^{4}} + 1}}{6 x^{4}} - \frac{b^{\frac{3}{2}} c \sqrt{\frac{a}{b x^{4}} + 1}}{4 x^{2}} - \frac{b^{\frac{3}{2}} c}{16 x^{2} \sqrt{\frac{a}{b x^{4}} + 1}} - \frac{b^{\frac{3}{2}} e \sqrt{\frac{a}{b x^{4}} + 1}}{6} + \frac{b^{\frac{3}{2}} e \operatorname{asinh}{\left (\frac{\sqrt{b} x^{2}}{\sqrt{a}} \right )}}{2} - \frac{3 b^{2} c \operatorname{asinh}{\left (\frac{\sqrt{a}}{\sqrt{b} x^{2}} \right )}}{16 \sqrt{a}} - \frac{b^{2} e x^{2}}{2 \sqrt{a} \sqrt{1 + \frac{b x^{4}}{a}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((f*x**3+e*x**2+d*x+c)*(b*x**4+a)**(3/2)/x**9,x)

[Out]

a**(3/2)*d*gamma(-7/4)*hyper((-7/4, -1/2), (-3/4,), b*x**4*exp_polar(I*pi)/a)/(4
*x**7*gamma(-3/4)) + a**(3/2)*f*gamma(-5/4)*hyper((-5/4, -1/2), (-1/4,), b*x**4*
exp_polar(I*pi)/a)/(4*x**5*gamma(-1/4)) + sqrt(a)*b*d*gamma(-3/4)*hyper((-3/4, -
1/2), (1/4,), b*x**4*exp_polar(I*pi)/a)/(4*x**3*gamma(1/4)) - sqrt(a)*b*e/(2*x**
2*sqrt(1 + b*x**4/a)) + sqrt(a)*b*f*gamma(-1/4)*hyper((-1/2, -1/4), (3/4,), b*x*
*4*exp_polar(I*pi)/a)/(4*x*gamma(3/4)) - a**2*c/(8*sqrt(b)*x**10*sqrt(a/(b*x**4)
 + 1)) - 3*a*sqrt(b)*c/(16*x**6*sqrt(a/(b*x**4) + 1)) - a*sqrt(b)*e*sqrt(a/(b*x*
*4) + 1)/(6*x**4) - b**(3/2)*c*sqrt(a/(b*x**4) + 1)/(4*x**2) - b**(3/2)*c/(16*x*
*2*sqrt(a/(b*x**4) + 1)) - b**(3/2)*e*sqrt(a/(b*x**4) + 1)/6 + b**(3/2)*e*asinh(
sqrt(b)*x**2/sqrt(a))/2 - 3*b**2*c*asinh(sqrt(a)/(sqrt(b)*x**2))/(16*sqrt(a)) -
b**2*e*x**2/(2*sqrt(a)*sqrt(1 + b*x**4/a))

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{{\left (b x^{4} + a\right )}^{\frac{3}{2}}{\left (f x^{3} + e x^{2} + d x + c\right )}}{x^{9}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b*x^4 + a)^(3/2)*(f*x^3 + e*x^2 + d*x + c)/x^9,x, algorithm="giac")

[Out]

integrate((b*x^4 + a)^(3/2)*(f*x^3 + e*x^2 + d*x + c)/x^9, x)